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Ⅰ. Introduction

Distributed computing has gained considerable

attention in the realm of computer science, particularly

with the advent of large-scale data processing and

real-time applications[1,2,3]. In order to handle

large-scale data with improving computation speed,

various distributed machine learning algorithms came

out. Especially, federated learning (FL) is a learning

method that transmits only model parameters to a

central server without transmitting local data[4]. It has

the advantage of protecting personal information

while reducing the amount of communication data[5,6].

Meanwhile, quantum computing, which processes

data using quantum mechanical phenomena such as

entanglement and superposition, is known that it can

solve some complex problems faster than

conventional computing methods[7]. The research on

quantum machine learning (QML) relies on quantum

computing characteristics to enhance classical

machine learning[8]. In the noisy intermediate-scale

quantum (NISQ) era, where it is still difficult to use

a large number of qubits, the ability of quantum neural

networks (QNNs) has the potential to overcome these

limitations.

One of the problems with FL is that sending large

amounts of neural network model parameters can

critically impact the performance of the global model.

Quantum computing has a good chance of making up

for this, since it has potential that QNN can obtain

better under less parameter usage compared to

classical NN. In detail, quantum computers leverage

phenomena like quantum coherence and entanglement

to perform computations that are unachievable for

classical computers[9]. Quantum federated learning

(QFL) is designed based on the traditional structure

of classical FL, with the adaptation of quantum

computing[10]. QFL retains the replacement of all

classical neural networks (NNs) with quantum neural

networks, preserving the overall architectural

framework.

In this paper, we investigate the possibility of the
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practical use of QFL. An MNIST, a widely-used

classification dataset, is applied to evaluate the

performance of QFL. We have determined the

appropriate number of qubits for quantum federated

learning by varying the number of qubits used and

the number of MNIST data classes.

The rest of this paper is organized as follows.

Section II investigates the basics of quantum

computing and quantum machine learning, and

Section III discusses the detailed explanation and

structure of QFL. Numerical results are analyzed in

Section IV, and Section V concludes this paper and

presents future research directions.

Ⅱ. Basics of Quantum Machine Learning

This section presents quantum computing, QNN,

and its basics. Analogous to the role of bits as the

fundamental units in classical computing, qubits serve

as the fundamental units in quantum computing. One

salient distinction between a qubit and a bit is that

a qubit is represented in a two-dimensional quantum

state. When leveraging quantum states as units of

information, the intrinsic phenomena of quantum

mechanics become pivotal in defining the information.

Whereas a singular bit can possess one of two values,

0 or 1, a single qubit is typically represented as a

superposition of states and , denoted as follows:

(1)

Here, |a |2 and |b |2 represent the probabilities of

measuring the qubit as 0 and 1, respectively. Hence,

a and b must satisfy the condition |a |2 + |b |2 = 1 .

Quantum superposition is one of the inherent

properties of quantum physics, distinct from the

classical theory.

In addition, one of the quantum properties of

quantum computing is the entanglement among the

qubits.

In the context of qubits, entanglement can be

illustrated using a pair of qubits in an entangled state.

If two qubits are entangled, measuring one qubit can

immediately determine the state of the other qubit.

However, this does not imply “communication”

between the qubits. Instead, it is the result of the

correlations present in their shared quantum state.

In conventional computers, semiconductor devices

can function as operational amplifiers or switches, and

the advancement in semiconductor fabrication

technology has enabled the integration of billions of

gates on a single integrated circuit. The output of each

gate is a digital electrical signal representing a value

of 0 or 1, which is fed into the input of another gate

through wires. On the other hand, since quantum

signals are analog signals and are sensitive to noise,

the system should be designed to change the quantum

state of the qubits as intended with qubits having

quantum information rather than passing the quantum

signals through the gate. Every quantum gate operates

by rotating the state vector to another state, preserving

the magnitude of the state vector as one basically.

Among these, the most commonly used gates in

quantum operations are Rx, Ry, Rz, and controlled-NOT
(CNOT) gates. The Rx, Ry, Rz gates rotate the qubit

by q around their respective axes.

A QNN represents a quantum version of the

traditional neural networks used in machine learning

and is composed of encoding, parameterized quantum

circuit (PQC), and measurement, as shown in Fig. 1.

Encoding is the process of converting classical data

into quantum state form for use in QNN. Commonly

used encoding techniques in QML include

amplitude-encoding, angle-encoding, and

basis-encoding. Among these, angle-encoding is

generally preferred due to its ease of implementation

and superior performance. In the encoding layer,

rotation gates are typically utilized. After passing

through the encoding layer, the quantum state

obtained from the output of the encoding layer serves

as the input to the PQC. PQC carries out the desired

computation equivalent to a classical neural network.

Fig. 1. QNN Architecture
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a core component of a QNN. PQC is constructed by

appropriately combining trainable rotation gates with

fixed CNOT gates. The rotation gates enable

continuous control of each qubit's state, while the

CNOT gate performs the task of entangling two

qubits. The layers in PQC are consisted of quantum

gates including Rx, Ry, Rz and CNOT gates. The

number of layers can be adjusted as a hyperparameter.

By combining rotation gates and CNOT gates, we can

design a PQC. The performance of PQC is affected

by the arrangement of the quantum gates that consists

of the circuit. Measurement is the sole method of

transforming an indeterminate quantum state into a

definite value. Through this process, we can obtain

an observable classical output.

Ⅲ. System Model

In this paper, we apply the QFL model with QNNs

in edge devices, as visualized in Fig. 2. Similar to

classical FL, in the QFL structure, each edge device

trains the QNN model using its own dataset, and the

output of the model is obtained through measurement,

, is referred to as an observable,

where |y| signifies the output dimension. With the

observable output and the origin value of the input,

the loss is calculated. Thereafter, the QNN is

trained using the stochastic gradient descent algorithm

as follows:

(2)

where is the learning rate, and the gradient

is calculated using the parameter shift rule [9]. These

parameters are utilized in global model training using

FedAvg, a commonly employed method in FL for

parameter integration [3]. In other words, the classical

input x is transformed into a quantum state through

the encoding stage, and this quantum state is

processed through the PQC U(q). The global QNN

parameter is given by the averaged PQC parameter

as follows:

(3)

where is the n-th device's local model

parameter, and cn∈ {0, 1} is an indicator function

returning 1 if the n-th edge device contributes to the

global model aggregation.

Ⅳ. Performance evaluation

We performed MNIST image classification through

the global QFL model. John et al.[11] also performed

the experience in comparing the accuracy of various

quantum computing across multiple datasets.

However, it’s worth noting that the datasets employed

in that paper are limited to binary classification

problems, whereas our work extends this by

classifying four and ten classes. We utilized four local

devices, and the learning was carried out by varying

the number of qubits to 4, 6, and 10, respectively.

The evaluation was conducted on mini-MNIST, which

classifies four kinds of data from 0 to 3, and on

full-MNIST, which classifies ten kinds of data from

0 to 9. The training was performed over a total of

100 epochs.

Fig. 3 depicts the training loss for the mini-MNIST

and full-MNIST datasets, respectively. Regardless of

the number of qubits, the training loss converged well

in all cases. Fig. 4 illustrates the test accuracy

according to the number of qubits. In the system

classifying four classes, approximately 92.4% of high

performance was achieved with 4 qubits, while 88.5%

and 89.2% were performed with 6 and 10 qubits,

respectively. In this case, there was no linear trend

according to the number of qubits. However, it was

confirmed that high performance can be achieved

even when a small number of qubits must be used,
Fig. 2. A schematic illustration of QFL
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depending on the situation.

Ⅴ. Conclusions 

In this paper, image classification was performed

through QFL. We discussed a quantum federated

learning system that combines the advantages of

federated learning and quantum computing and

debated the structure of quantum computing and

quantum neural networks. Demonstrating an accuracy

of over 90% in performance evaluations, we

confirmed the universal applicability of QFL. With

the benefits of local data protection and reduced

communication volume, Federated learning may be

more actively utilized in scenarios like learning from

electronic health record (EMR) data or in

environments with poor communication conditions. It

is generally known that utilizing a greater number of

qubits tends to yield higher performance [12,13]. In

future research, we plan to conduct experiments aimed

at performance enhancement by modifying the

quantum gates and layers within the PQC.
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